3.148 \(\int \frac{x^2}{(a+b \sinh ^{-1}(c x))^{3/2}} \, dx\)

Optimal. Leaf size=226 \[ \frac{\sqrt{\pi } e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c x)}}{\sqrt{b}}\right )}{4 b^{3/2} c^3}-\frac{\sqrt{3 \pi } e^{\frac{3 a}{b}} \text{Erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c x)}}{\sqrt{b}}\right )}{4 b^{3/2} c^3}-\frac{\sqrt{\pi } e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c x)}}{\sqrt{b}}\right )}{4 b^{3/2} c^3}+\frac{\sqrt{3 \pi } e^{-\frac{3 a}{b}} \text{Erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c x)}}{\sqrt{b}}\right )}{4 b^{3/2} c^3}-\frac{2 x^2 \sqrt{c^2 x^2+1}}{b c \sqrt{a+b \sinh ^{-1}(c x)}} \]

[Out]

(-2*x^2*Sqrt[1 + c^2*x^2])/(b*c*Sqrt[a + b*ArcSinh[c*x]]) + (E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c*x]]/Sqr
t[b]])/(4*b^(3/2)*c^3) - (E^((3*a)/b)*Sqrt[3*Pi]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh[c*x]])/Sqrt[b]])/(4*b^(3/2)*c
^3) - (Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c*x]]/Sqrt[b]])/(4*b^(3/2)*c^3*E^(a/b)) + (Sqrt[3*Pi]*Erfi[(Sqrt[3]*Sq
rt[a + b*ArcSinh[c*x]])/Sqrt[b]])/(4*b^(3/2)*c^3*E^((3*a)/b))

________________________________________________________________________________________

Rubi [A]  time = 0.323865, antiderivative size = 226, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 5, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.312, Rules used = {5665, 3308, 2180, 2204, 2205} \[ \frac{\sqrt{\pi } e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c x)}}{\sqrt{b}}\right )}{4 b^{3/2} c^3}-\frac{\sqrt{3 \pi } e^{\frac{3 a}{b}} \text{Erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c x)}}{\sqrt{b}}\right )}{4 b^{3/2} c^3}-\frac{\sqrt{\pi } e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c x)}}{\sqrt{b}}\right )}{4 b^{3/2} c^3}+\frac{\sqrt{3 \pi } e^{-\frac{3 a}{b}} \text{Erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c x)}}{\sqrt{b}}\right )}{4 b^{3/2} c^3}-\frac{2 x^2 \sqrt{c^2 x^2+1}}{b c \sqrt{a+b \sinh ^{-1}(c x)}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(a + b*ArcSinh[c*x])^(3/2),x]

[Out]

(-2*x^2*Sqrt[1 + c^2*x^2])/(b*c*Sqrt[a + b*ArcSinh[c*x]]) + (E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c*x]]/Sqr
t[b]])/(4*b^(3/2)*c^3) - (E^((3*a)/b)*Sqrt[3*Pi]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh[c*x]])/Sqrt[b]])/(4*b^(3/2)*c
^3) - (Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c*x]]/Sqrt[b]])/(4*b^(3/2)*c^3*E^(a/b)) + (Sqrt[3*Pi]*Erfi[(Sqrt[3]*Sq
rt[a + b*ArcSinh[c*x]])/Sqrt[b]])/(4*b^(3/2)*c^3*E^((3*a)/b))

Rule 5665

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 + c^2*x^2]*(a + b*ArcSi
nh[c*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[1/(b*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[(a + b*x)^(n +
1), Sinh[x]^(m - 1)*(m + (m + 1)*Sinh[x]^2), x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0]
 && GeQ[n, -2] && LtQ[n, -1]

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{x^2}{\left (a+b \sinh ^{-1}(c x)\right )^{3/2}} \, dx &=-\frac{2 x^2 \sqrt{1+c^2 x^2}}{b c \sqrt{a+b \sinh ^{-1}(c x)}}+\frac{2 \operatorname{Subst}\left (\int \left (-\frac{\sinh (x)}{4 \sqrt{a+b x}}+\frac{3 \sinh (3 x)}{4 \sqrt{a+b x}}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{b c^3}\\ &=-\frac{2 x^2 \sqrt{1+c^2 x^2}}{b c \sqrt{a+b \sinh ^{-1}(c x)}}-\frac{\operatorname{Subst}\left (\int \frac{\sinh (x)}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{2 b c^3}+\frac{3 \operatorname{Subst}\left (\int \frac{\sinh (3 x)}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{2 b c^3}\\ &=-\frac{2 x^2 \sqrt{1+c^2 x^2}}{b c \sqrt{a+b \sinh ^{-1}(c x)}}+\frac{\operatorname{Subst}\left (\int \frac{e^{-x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{4 b c^3}-\frac{\operatorname{Subst}\left (\int \frac{e^x}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{4 b c^3}-\frac{3 \operatorname{Subst}\left (\int \frac{e^{-3 x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{4 b c^3}+\frac{3 \operatorname{Subst}\left (\int \frac{e^{3 x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c x)\right )}{4 b c^3}\\ &=-\frac{2 x^2 \sqrt{1+c^2 x^2}}{b c \sqrt{a+b \sinh ^{-1}(c x)}}+\frac{\operatorname{Subst}\left (\int e^{\frac{a}{b}-\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c x)}\right )}{2 b^2 c^3}-\frac{\operatorname{Subst}\left (\int e^{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c x)}\right )}{2 b^2 c^3}-\frac{3 \operatorname{Subst}\left (\int e^{\frac{3 a}{b}-\frac{3 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c x)}\right )}{2 b^2 c^3}+\frac{3 \operatorname{Subst}\left (\int e^{-\frac{3 a}{b}+\frac{3 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c x)}\right )}{2 b^2 c^3}\\ &=-\frac{2 x^2 \sqrt{1+c^2 x^2}}{b c \sqrt{a+b \sinh ^{-1}(c x)}}+\frac{e^{a/b} \sqrt{\pi } \text{erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c x)}}{\sqrt{b}}\right )}{4 b^{3/2} c^3}-\frac{e^{\frac{3 a}{b}} \sqrt{3 \pi } \text{erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c x)}}{\sqrt{b}}\right )}{4 b^{3/2} c^3}-\frac{e^{-\frac{a}{b}} \sqrt{\pi } \text{erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c x)}}{\sqrt{b}}\right )}{4 b^{3/2} c^3}+\frac{e^{-\frac{3 a}{b}} \sqrt{3 \pi } \text{erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c x)}}{\sqrt{b}}\right )}{4 b^{3/2} c^3}\\ \end{align*}

Mathematica [A]  time = 0.37857, size = 290, normalized size = 1.28 \[ \frac{e^{-3 \left (\frac{a}{b}+\sinh ^{-1}(c x)\right )} \left (-e^{\frac{4 a}{b}+3 \sinh ^{-1}(c x)} \sqrt{\frac{a}{b}+\sinh ^{-1}(c x)} \text{Gamma}\left (\frac{1}{2},\frac{a}{b}+\sinh ^{-1}(c x)\right )+\sqrt{3} e^{3 \sinh ^{-1}(c x)} \sqrt{-\frac{a+b \sinh ^{-1}(c x)}{b}} \text{Gamma}\left (\frac{1}{2},-\frac{3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )-e^{\frac{2 a}{b}+3 \sinh ^{-1}(c x)} \sqrt{-\frac{a+b \sinh ^{-1}(c x)}{b}} \text{Gamma}\left (\frac{1}{2},-\frac{a+b \sinh ^{-1}(c x)}{b}\right )+\sqrt{3} e^{\frac{6 a}{b}+3 \sinh ^{-1}(c x)} \sqrt{\frac{a}{b}+\sinh ^{-1}(c x)} \text{Gamma}\left (\frac{1}{2},\frac{3 \left (a+b \sinh ^{-1}(c x)\right )}{b}\right )+e^{\frac{3 a}{b}+2 \sinh ^{-1}(c x)}+e^{\frac{3 a}{b}+4 \sinh ^{-1}(c x)}-e^{\frac{3 a}{b}+6 \sinh ^{-1}(c x)}-e^{\frac{3 a}{b}}\right )}{4 b c^3 \sqrt{a+b \sinh ^{-1}(c x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^2/(a + b*ArcSinh[c*x])^(3/2),x]

[Out]

(-E^((3*a)/b) + E^((3*a)/b + 2*ArcSinh[c*x]) + E^((3*a)/b + 4*ArcSinh[c*x]) - E^((3*a)/b + 6*ArcSinh[c*x]) - E
^((4*a)/b + 3*ArcSinh[c*x])*Sqrt[a/b + ArcSinh[c*x]]*Gamma[1/2, a/b + ArcSinh[c*x]] + Sqrt[3]*E^(3*ArcSinh[c*x
])*Sqrt[-((a + b*ArcSinh[c*x])/b)]*Gamma[1/2, (-3*(a + b*ArcSinh[c*x]))/b] - E^((2*a)/b + 3*ArcSinh[c*x])*Sqrt
[-((a + b*ArcSinh[c*x])/b)]*Gamma[1/2, -((a + b*ArcSinh[c*x])/b)] + Sqrt[3]*E^((6*a)/b + 3*ArcSinh[c*x])*Sqrt[
a/b + ArcSinh[c*x]]*Gamma[1/2, (3*(a + b*ArcSinh[c*x]))/b])/(4*b*c^3*E^(3*(a/b + ArcSinh[c*x]))*Sqrt[a + b*Arc
Sinh[c*x]])

________________________________________________________________________________________

Maple [F]  time = 0.109, size = 0, normalized size = 0. \begin{align*} \int{{x}^{2} \left ( a+b{\it Arcsinh} \left ( cx \right ) \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a+b*arcsinh(c*x))^(3/2),x)

[Out]

int(x^2/(a+b*arcsinh(c*x))^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arcsinh(c*x))^(3/2),x, algorithm="maxima")

[Out]

integrate(x^2/(b*arcsinh(c*x) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arcsinh(c*x))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\left (a + b \operatorname{asinh}{\left (c x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(a+b*asinh(c*x))**(3/2),x)

[Out]

Integral(x**2/(a + b*asinh(c*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arcsinh(c*x))^(3/2),x, algorithm="giac")

[Out]

integrate(x^2/(b*arcsinh(c*x) + a)^(3/2), x)